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1 What are we trying to do?
What do macroeconomists mean when they say “log-linearize an equation around

steady state”? They mean, rewrite each variable x in the equation as log
(
x
x̄

)
, where x̄

is the steady state value of x. Why do we want to do this? Two reasons:

1.1 Log converts multiplicative relationships to additive relationships
The equation will now be linear! It’s inconvenient (for doing regressions, writing

code) when the relationship between the variables is nonlinear. log is a function that
has two very special properties: log (ab) = log a + log b and log

(
ab
)

= b log a. log can
convert multiplication to addition, and exponents to multiplication. Why is this relevant
to linearization? For example, suppose f (x) = x2, a quadratic. Why don’t we instead
express x in terms of its log? We can rewrite as log f (x) = 2 log x. Define y = log x.
Then we can rewrite the equation as f (y) = 2y. We just went from a quadratic to a
linear equation!
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1.2 Log allows for percentage interpretations
log allows us to interpret changes in variables as changes in their percentages. This is

especially useful when we analyze variables with very different magnitudes. As economists
we love thinking about things in terms of deviations and percentages, rather than the
levels, because percentages allow us to compare apples to oranges: for example, if
one industry much more sales than another industry, their levels of sales may not be
comparable, but the percentage change in sales will be. This is especially useful when
we want to understand and evaluate the effects of different policies. Percentages are
a natural way to think of the response of some economic variable to a policy impact,
and allows us to compare the responses of diverse parts of the economy that may not
otherwise be comparable in levels (ex. employment, sales, prices, are often very different
in their levels).

Specifically, in macro we like to talk about deviations from the steady state. The
steady state is defined as the values for which the model’s dynamic variables will not
change from one period to the next. (The steady state is almost never attained in real
life: it’s a convenient mathematical entity. But solving for it certainly helps us think
about transitions from one steady state to another. Arguably, the economy is always
“transitioning”, so that does correspond more to real life.) Now log brings us from the
realm of levels to percentage deviations from a steady state. Why?

Suppose we are initially at x̄ and we deviate to x. In logs, the deviation would be
log x− log x̄ = log x

x̄
. For small deviations of x, we can approximate log x with the Taylor

rule. The first order approximation of log x
x̄

around x = x̄ is

log x− log x̄ = log x
x̄
|x=x̄

≈ log (1) + 1
x̄/x̄

1
x̄

(x− x̄) = x− x̄
x̄

Therefore, remarkably, log x−log x̄ ≈ x−x̄
x̄

. Thus for any variable x, we can approximate
percentage deviations from some arbitrary level x̄ with deviations of log x from log x̄. This
fact helps us interpret the results of regressing y against x, when y and x are on vastly
different scales: for example, we could have y ∈ [0, 20] but x ∈ [2000, 4000]. Suppose we
want to recover estimates α̂, β̂ where we believe the relationship between x and y to be
y = α̂ + β̂x. Even if x strong predicts y, the coefficient β̂ may be very small, since x
tends to be large (between 2000 and 4000) and y tends to be small (between 0 and 20).
It is much more informative to look at the response of y to x when x changes by some
percentage, the elasticity so to speak.

Let us denote the log deviation around steady state x as x̂ ≡ log x
x̄
.
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2 A Simple Example from First Principles

Suppose we wanted to log linearize

yt = sztk
α
t

Notice that the steady state ȳ is simply ȳ = sz̄k̄α. Dividing by steady state values
and taking logs, we have

yt
ȳ

= zt
z̄

(
kt

k̄

)α

log yt
ȳ

= log zt
z̄

+ α log kt
k̄

ŷt = ẑt + αk̂t

3 Cookbook Procedure

For ease of notation denote dxt ≡ xt − x̄. Suppose we wanted to log linearize an
arbitrary equation

f (xt, wt) = g (yt, zt)
It does not matter the number of variables in f and g!

Step 1.

Take the partial derivatives, where we tack on to the partial derivative term of xt
the term dxt. Yes, right now it is completely arbitrary. But see “Proof of the Cookbook
Procedure” to learn why!

Evaluate the partial derivatives at steady state values x̄, w̄, ȳ, z̄.

∂

∂xt
f (x̄, w̄) dxt + ∂

∂wt
f (x̄, w̄) dwt = ∂

∂yt
g (ȳ, z̄) dyt + ∂

∂zt
g (ȳ, z̄) dzt

Step 2.

For each dxt, substitute in the term x̂tx̄, where x̂t = log
(
xt

x̄

)
. Simplify and you are

done!
f1 (x̄, w̄) x̂tx̄+ f2 (x̄, w̄) ŵtw̄ = g1 (ȳ, z̄) ŷtȳ + g2 (ȳ, z̄) ẑtz̄

Indeed, in the proof below I will show you that dxt ≡ xt − x̄ ≈ x̂tx̄.

3



Xiaoyang Li

4 More General Example

Suppose we want to log linearize

ct + kt = wtnt

Step 1.

Take the partial derivatives evaluated at the steady state, where we tack on to the
partial derivative term of x the term dx. Note that the partial derivative ∂

∂x
(x+ anything) =

1. In a different case, if the partial still contained x, we would need to sub in for steady
state value x̄.

(1) dct + (1) dkt = (1) n̄dwt + (1) w̄dnt

Step 2.

Substitute in for each arbitrary dxt the term x̂tx̄.

ĉtc̄+ k̂tk̄ = n̄ŵtw̄ + w̄n̂tn̄

ĉtc̄+ k̂tk̄ = w̄n̄ (ŵt + n̂t)

And that’s it, folks!

5 Proof of the Cookbook Procedure

Suppose we wanted to log linearize an arbitrary equation

f (x) = g (y, z)

It does not matter the number of variables in f and g! What I show below will still
work.

Take the Taylor expansion around the steady state of both sides of the equation,
where x̄, ȳ, and z̄ are the steady state values:

f (x̄) + f ′ (x̄) (x− x̄) = g (ȳ, z̄) + ∂

∂y
g (ȳ, z̄) (y − ȳ) + ∂

∂z
g (ȳ, z̄) (z − z̄) (1)

The right hand side is the standard multinomial Taylor expansion.

Now importantly, note that this will always be true, almost tautologically:

f (x̄) = g (ȳ, z̄)
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Remember, in economics we only consider unique steady state values, and in order
to be considered a steady state ALL the dynamic variables have to be in steady state.

We can then just eliminate the constant term, so that equation 1 becomes

f ′ (x̄) (x− x̄) = ∂

∂y
g (ȳ, z̄) (y − ȳ) + ∂

∂z
g (ȳ, z̄) (z − z̄)

Now recall that the first order Taylor approximation around x̄ of log
(
x
x̄

)
|x=x̄ ≈ x−x̄

x̄
.

Therefore

x− x̄ ≈ log
(
x

x̄

)
x̄

≡ x̂x̄

Let’s sub in for all the x− x̄ in equation 1 to get

f ′ (x̄) x̂x̄ = ∂

∂y
g (ȳ, z̄) ŷȳ + ∂

∂z
g (ȳ, z̄) ẑz̄

This is exactly what we did above! As an exercise, you can show this where f is a
function of two variables, for example, x and w. But hopefully it is clear that the proof
is independent of the number of variables.

6 More Complex Examples

6.1 Resource Constraint

Suppose you want to log-linearize

Atk
α
t = ct + kt+1 − (1− δ) kt

Step 1.

Take the partial derivatives evaluated at the steady state, where we tack on to the
partial derivative term of x the term dx.

k̄αdAt + Āαk̄α−1dkt = dct + dkt+1 − (1− δ) dkt

Step 2.

Substitute in dxt = x̂tx̄.

k̄αÂtĀ+ Āαk̄α−1k̂tk̄ = ĉtc̄+ k̂t+1k̄ − (1− δ) k̂tk̄
Āk̄α

(
Ât + αk̂t

)
= ĉtc̄+ k̄

(
k̂t+1 − (1− δ) k̂t

)
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6.2 Euler Equation

Suppose you want to log-linearize

c−σt = β
(
αAtk

α−1
t+1 + 1− δ

)
c−σt+1

Step 1.

Take the partial derivatives evaluated at the steady state, where we tack on to the
partial derivative term of x the term dx.

−σc̄−σ−1dct = β
(
αk̄α−1dAt + αĀ (α− 1) k̄α−2dkt+1

)
c̄−σ+β

(
αĀk̄α−1 + 1− δ

) (
−σc̄−σ−1dct+1

)
Step 2.

Substitute in dxt = x̂tx̄.

−σc̄−σ−1ĉtc̄ = β
(
αk̄α−1ÂtĀ+ αĀ (α− 1) k̄α−2k̂tk̄

)
c̄−σ + β

(
αĀk̄α−1 + 1− δ

) (
−σc̄−σ−1ĉtc̄

)
−σc̄−σ ĉt = βc̄−σ

{
αĀk̄α−1

(
Ât + (α− 1) k̂t

)
− σ

(
αĀk̄α−1 + 1− δ

)
ĉt
}

−σĉt = β
{
αĀk̄α−1

(
Ât + (α− 1) k̂t

)
− σ

(
αĀk̄α−1 + 1− δ

)
ĉt
}
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