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1 Intuition

At this point, we (hopefully) understand why studying impulse responses are useful
and how to compute the impulse response. Studying impulse responses help us analyze
the effects of different types of shocks (e.g., supply, demand, monetary) on macroeconomic
variables like GDP, inflation, and unemployment.

The question is what kinds of shocks should we choose as impulses? Ideally, these
shocks are as unrelated as possible to the information we currently have, or “orthogonal”.
We know something is unrelated to our current information if our prediction is wrong!
Yesterday I thought the inflation would decrease, but today I wake up and realize inflation
has risen. Since I am wrong, I must be missing information about inflation, so let me
go analyze my error. My error is the difference between my forecast at time t − 1 for
time t, and what actually happens at time t. In his slides, Professor Uhlig calls this the
one-step ahead prediction error.

In particular, if I am sometimes right and sometimes wrong about inflation, I should
look at the variance of my error over time to figure out why I am right and wrong at
different times. Call Σ the variance and ut my prediction error. Let me decompose
that variance into orthogonal/unrelated components, so I can isolate the contribution of
each of those components that are making me wrong. I should use these components as
my impulses to study the path of economic variables! Let me stitch those orthogonal
components into a matrix that Professor Uhlig calls A in his slides.

There are different ways I can choose these orthogonal components. Two popular
ways are called the Cholesky-decomposition and the Blanchard-Quah decomposition.
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2 Cholesky Decomposition

Cholesky Decomposition involves decomposing a positive definite matrix (in our case
Σ) into the product of a lower triangular matrix and its transpose. If you have a VAR
model involving GDP and inflation, Cholesky Decomposition can help transform the
correlated GDP and inflation series into uncorrelated series, facilitating easier modeling
and interpretation.

Finding such a decomposition amounts to solving a system of linear equations by
assigning unknowns. In the 2x2 case, let

A =
(

a1 0
a2 a3

)
s.t. AA′ = Σ

Suppose Σ =
(

1 1
1 2

)
as in Topic 3 Slide 19. Then

AA′ =
(

a1 0
a2 a3

)(
a1 a2
0 a3

)

=
(

a2
1 a1a2

a1a2 a2
2 + a2

3

)
=
(

1 1
1 2

)

So

a2
1 = 1 =⇒ a1 = ±1

=⇒ a2 = ±1

Notice that a couple solutions are possible: (a1, a2, a3) = (1, 1,±1) , (−1,−1,±1).
However, by convention (to ensure the uniqueness of the Cholesky decomposition), we
restrict ourselves to the case where the diagonal entries of A are real and positive.

Hence the Cholesky matrix is

A =
(

1 0
1 1

)
=⇒ a1 =

(
1
1

)
, a2 =

(
0
1

)

3 Blanchard-Quah Decomposition

Blanchard-Quah Decomposition is used to separate permanent and transitory components
of economic shocks. It is based on the idea that not all shocks have a lasting impact on
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the economy. For example, perhaps the 1917 Russian revolution had a permanent impact
on the US economy ;) see https://www.journals.uchicago.edu/doi/10.1086/722933. The
Blanchard-Quah decomposition relies on long-run restrictions, where certain variables
are assumed not to have a long-term impact on others. For example, a demand shock
may not have a long-run effect on output, while a supply shock does.

3.1 First find the transitory component

We want to seek a vector a = [a1, a2]′ that has no permanent effect on the AR system.
Mechanically, that means if a enters as a shock, it eventually dies out. That is, suppose
at time 0 y0 = a. Then

y1 = By0 = Ba

=⇒ yk = Bky0

The transitory component must satisfy

lim
k→∞

Bk

(
a1
a2

)
=
(

0
0

)

The problem amounts to just solving the system of equations for a1 and a2. The
difficulty lies in finding Bk – it would be daunting to multiply it out! Instead, we use a
trick. We already know how to decompose B = V DV −1 by finding the eigenvalues and
eigenvectors. Then

B = V DV −1 =⇒ Bk = V DkV −1

lim
k→∞

Bka = V lim
k→∞

(
Dk
)

V −1a = 0

We can easily solve for a after taking limk→∞
(
Dk
)

and then multiplying out the
remaining matrices.

3.2 Next find the Cholesky decomposition and multiply by the
inverse

At this point, we could simply pick a vector orthogonal to a and stitch them together
to create Ã. But we have more work to do! Why? First, we want Ã to satisfy ÃÃ′ = Σ
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because we want the impulse vectors to reflect the contributions of orthogonal components
to the error term. Second, we want the vectors in A to be of norm 1. To satisfy the
first property, we use the Cholesky decomposition! We exploit the proposition on Topic
3 Slide 13. It turns out, we can employ any Cholesky decomposition to project (or
rotate) some vector into the proper impulse response. Suppose we go find the Cholesky
decomposition as some matrix AA′ = Σ. Per the proposition (and the proof of the
proposition on Slide 14), we multiply the a we found in step 1 by A−1.

q̃ = A−1a =
(

q̃1
q̃2

)

3.3 Finally, normalize to length 1

Finally, we want our impulse to be norm 1, so

q = 1√
q̃2

1 + q̃2
2

q̃ =
(

q1
q2

)

Pick q⊥ =
(
−q2
q1

)
, which is an orthogonal vector to q. Hence,

ABQ = AQ = A

(
q1 −q2
q2 q1

)

is the Blanchard-Quah decomposition of Σ, where A is the Cholesky decomposition.
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